Name:	
Period:	Subject:
Date:	

AP Chem Summer Homework Packet

I. Significant Figures

1	Determine	the number	of significan	t digits for	each of th	a following:
1.	Determine	me number	oi signincan	t aigits for	each of th	le foliowing:

a. _____ 2.4081

f. _____ 7200.

j. 8 000 000

b. _____ 374.0

g. _____ 0.0019

k. _____ 8.00×10^6

c. _____ 374

h. _____ 0.001900

1. $\underline{}$ 8.0000 x10⁶

d. _____ 1.900

i. 9300.11

e. _____ 7200

2. Solve the following equations. Be sure to express your answer with the correct number of significant figures.

a. _____ 13.8 + 7 + 2.14

f. 5.27 – 11.0

b. _____ 8 · 2.125 · 1.4

g. _____ 0.2 · 12.4

c. _____ 23 – 1.324

h. _____ 2.00 ÷ 8.000

d. _____ 0.0750 ÷ 3.000

i. _____ 1.5 + 2.25 – 3.85

e. _____ 1200 + 8 +3.5

j. $2.0 \cdot 3.750 \div 1.5$

II. Chemical Formulae:

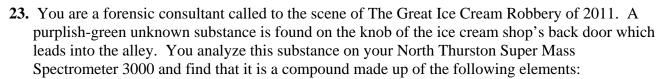
3. Write formulas for the following:	4. Name each of the following:
a. barium sulfate	a. CuSO ₄
b. ammonium chloride	b. PCl ₃
c. chlorine monoxide	c. Li ₃ N
d. silicon tetrachloride	d. BaSO ₃
e. magnesium fluoride	e. N ₂ F ₄
f. sodium oxide	f. KClO ₄
g. sodium peroxide	g. NaH
h. copper(I) oxide	h. (NH ₄) ₂ Cr ₂ O ₇
i. zinc sulfide	' IIIO
j. potassium carbonate	j. Sr ₃ P ₂
k. hydrobromic acid	k. Mg(OH) ₂
l. perchloric acid	1. Al ₂ S ₃
m. lead(II) acetate	m. AgBr
n. sodium permanganate	n. P ₄ O ₁₀
o. lithium oxalate	o. HC ₂ H ₃ O ₂
p. potassium cyanide	p. CaI ₂
q. iron(III) hydroxide	q. MnO ₂
r. silicon dioxide	r. Li ₂ O
s. nitrogen trifluoride	s. FeI ₃
t. chromium(III) oxide	t. Cu ₃ PO ₄
u. calcium chlorate	u. PCl ₅
v. sodium thiocyanate	v. NaCN
w. nitrous acid	w. HF
x. barium nitrate dihydrate	$x. CaCO_3 \cdot 4H_2O$
Trends and the Periodic Table	
Name the family (ex: alkaline earth metal.	s) that each of the following elements belongs
a. bromine	e. magnesium
b. strontium	f. sodium
c. potassium	g. krypton
d. chlorine	h. neon

6. Arrange according to increasing electronegativity: aluminum, cesium, oxygen, molybdenum.

/•	Classify the following as: alkali metal, alkaline earth metal, transition metal, inner transition					
	metal, nonmetal, or m		.,.			
	<u>=</u>					
				·		
	d. platinum		h. silver		_	
8.	Arrange according to	o increasing atomi	c radius: tin, neon,	silver, xenon.		
9.	Name three elements	s that belong to the	e same family or gi	oup as barium.		
10	. Name three elements	s that belong to the	e same period as si	licon .		
11	. Which would require or taking away a sec		-	way a second elec	tron from sodium	
	g	ond electron from	calcium.			
		ond electron from	calcium.			
IV. A	Atomic Structure	ond electron from	calcium.			
IV. A		ond electron from	calcium.			
			calcium.			
	Atomic Structure		# protons	# electrons	# neutrons	
	Atomic Structure Fill in the following t	able:		# electrons	# neutrons	
	Atomic Structure Fill in the following to the element	able:		# electrons	# neutrons	
	Atomic Structure Fill in the following to element a. calcium	able:		# electrons	# neutrons	

e. fluoride ion

f. uranium-234


g. carbon-14

h. barium-135

13. For	r each of the following elements, calculate the average mass to the nearest hundredth
a.	Boron: 20% Boron-10, 80% Boron-11
b.	Titanium: 8.25% Titanium-46, 7.44% Titanium-47, 73.72% Titanium-48,
	5.41% Titanium-49, 5.18% Titanium-50
c.	Magnesium: 79% Magnesium-24, 10% Magnesium-25, 11% Magnesium-26
d.	Carbon: 98.89% Carbon-12, 1.11% Carbon-13
e.	Chlorine: 75.77% Chlorine-35, 24.23% Chlorine-37
Chem	nical Reactions
14. In	the chemical formula 5H ₂ SO ₄ , what does the number "5" represent?
Wi	hat does the number "2" represent?
15. In	the chemical formula 2Al(NO ₃) ₃ , how many total nitrogen atoms are there?
Но	ow many total oxygen atoms are there?
	lance the following chemical equations by using the appropriate coefficients for the ious compounds. (Note: not every compound will need a coefficient.)
a.	$P_4O_{10} + H_2O \longrightarrow H_3PO_4$
b.	$C_3H_8 + C_2 \longrightarrow CO_2 + H_2O$
c.	KClO ₃ > KCl + O ₂
d.	Al + CuCl ₂ > AlCl ₃ + Cu
e.	$\underline{\hspace{1cm}}$ NH ₄ NO ₃ \longrightarrow $\underline{\hspace{1cm}}$ N ₂ O + $\underline{\hspace{1cm}}$ H ₂ O
f.	$\underline{\hspace{1cm}}$ MgBr ₂ + $\underline{\hspace{1cm}}$ NaNO ₃ \longrightarrow $\underline{\hspace{1cm}}$ Mg(NO ₃) ₂ + $\underline{\hspace{1cm}}$ NaBr
g.	$P + Q_2 \longrightarrow P_4O_{10}$
h.	$C_2H_6 + C_2 - CO_2 + H_2O$
i.	$\underline{\hspace{1cm}} Ag + \underline{\hspace{1cm}} H_2SO_4 \longrightarrow \underline{\hspace{1cm}} Ag_2SO_4 + \underline{\hspace{1cm}} H_2$

V.

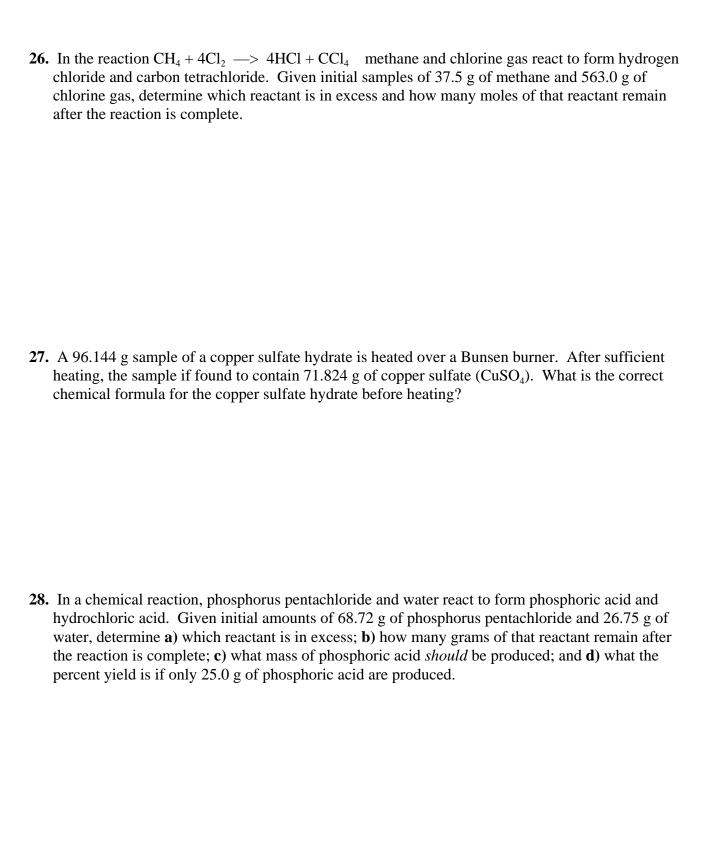
17. For each of the following, give the reaction type (synthesis, single displacement, etc.) for the
chemical reaction listed in the indicated question from above.
a. Question #16e
b. Question #16f
c. Question #16g
d. Question #16h
e. Question #16i
VI. Stoichiometry 18. What is the mass of 0.310 mol of Al ₂ O ₃ ?
19. How many moles are contained in a 187 g sample of KNO ₃ ?
20. The combustion of heptane proceeds according to the balanced equation: C ₇ H ₁₆ + 11O ₂ —> 7CO ₂ + 8H ₂ O If you burn enough heptane to produce 3.12 mol of water, how many moles of carbon dioxide are produced?
21. Aluminum and manganese oxide react in a single displacement reaction to form aluminum oxide and manganese according to the reaction: 2Al + 3MnO —> Al ₂ O ₃ + 3Mn How many grams of aluminum are required to yield 78.5 g of manganese?
22. What is the percent composition by mass of the compound potassium nitrite (KNO ₂)? (Please give percentages to the nearest one tenth of a percent).

47.3 % carbon 10.6 % hydrogen

42.1 % sulfur

What is the empirical formula of the purplish-green goop you analyzed?

24. Walking out to the North Thurston Forensi-Van with your purplish-green sample, you step in a puddle of orange ooze. Being the *complete science nerd* well-respected scientist you are, you decide to analyze the orange stuff as well. Popping the orange stuff into the NTHS SMS3000, you find that your orange compound has a molecular weight of 229.58 g/mol and is made up of:


47.1 % carbon

6.6 % hydrogen

46.3 % chlorine

What are the empirical formula and the molecular formula for the orange ooze?

25. In the reaction $2BiCl_3 + 3H_2S$ —> $Bi_2S_3 + 6HCl$ bismuth chloride and hydrogen sulfide undergo a double displacement reaction to form bismuth sulfide and hydrochloric acid. Initially you have 0.28 mol of $BiCl_3$ and 0.41 mol of H_2S . Which reactant is in excess and how many extra moles of that reactant are left over after the reaction is complete?

